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In this paper we consider the dynamics of a growing capillary fountain. We assume 
that at some time t = 0 an inviscid incompressible fluid is ejected vertically upwards 
through a circular nozzle. The subsequent dynamics of the resulting fountain is studied 
numerically using the boundary-element technique. The rate at which fluid is 
discharged from the nozzle and the Bond number (a measure of gravitational and 
surface tension forces) are the parameters that govern the dynamics of the fountain. 
For small discharge rates the fountain assumes the form of a slowly growing sessile 
drop, with dynamic effects not modifying the shape of the drop significantly. For large 
discharge rates we find that close to the symmetry axis a region develops with a high 
curvature. This strongly curved region results in a physical instability which can take 
on one of two forms: either a liquid drop is ejected from the free surface or the capillary 
surface entrains a bubble. For intermediate values of the discharge rate we find that 
fluid lobes develop which fall over the side of the nozzle. A number of experimental 
results are also presented showing the evolution of water fountains for different Bond 
numbers and discharge rates. Some of our numerical predictions are confirmed by the 
experimental results. 

1. Introduction 
Fountains, widely varying in size and design, are often used for decoration in 

gardens and buildings. The structure of these fountains is usually highly irregular and 
time dependent: the maximum height varies significantly with time and the break-up 
of the fountain into a spray of drops can often be observed. While in many cases the 
irregular behaviour of the fountain is enhanced by external effects (such as wind and 
irregularities in the nozzle and exit velocity), even seemingly well-constructed fountains 
in a shielded environment exhibit this irregular behaviour. It appears that there is no 
stable configuration for the fountain, thus preventing a steady state to be reached. 

For small exit velocities of the fluid, a stable configuration of the fountain may exist. 
The fountain would presumably evolve to a well-like structure with fluid overflowing 
the nozzle in a symmetric way. This particular problem has been studied by Dias & 
Vanden-Broeck (1990). Under the assumptions that the fluid attaches to the outside of 
the nozzle and that cavitation does not occur near the mouth of the nozzle, Dias & 
Vanden-Broeck have calculated the (two-dimensional) flow emerging from an infinitely 
long rectangular slit. Under the assumption that a stable, steady state exists, Vanden- 
Broeck (1993) recently calculated the asymptotic shape of a two-dimensional jet aimed 
vertically upwards. While the work of Dias & Vanden-Broeck (1990) and Vanden- 
Broeck (1993) gives important insight into the shape of the free surface, interesting 
questions related to the initial evolution of the fountain as it emerges from the nozzle 
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have not been answered. Another important question related to the aforementioned 
articles is whether it is at all possible to obtain a stable steady flow emerging from a 
nozzle pointed vertically upwards. 

It is clear that the exit velocity of the fluid emerging from the nozzle is an important 
parameter on which the stability of the resulting fountain may depend: high exit 
velocities appear to yield an unstable configuration while for small exit velocities a 
stable configuration may exist. Questions related to the stability of a fountain can only 
be answered by studying the evolution of the fountain as it emerges from the nozzle. 
Notwithstanding the highly irregular behaviour of a fully developed fountain which 
results when fluid is ejected at a large speed, the structure of the fountain as it first 
emerges from the nozzle is likely to be symmetric when the nozzle is symmetric. 
Instabilities may develop for large ejection velocities whict, in practice, would lead to 
the observed irregular behaviour. By studying the evolution of the fountain we can also 
investigate whether cavitation occurs at the mouth of the nozzle. 

Questions related to the initial development of the flow that is ejected from a nozzle 
have, to our knowledge, not been investigated previously. An important physical effect 
which has to be incorporated whenever the initial development of the fountain is 
studied, is surface tension. Without surface tension, the fluid region leaving the nozzle 
would initially have sharp edges, which is clearly non-physical. Surface tension effects 
are very important for nozzles with a small radius. However, even for nozzles with a 
relatively large radius we find that surface tension effects lead to rather surprising 
physical phenomena. For example, numerical and physical experiments show that a 
drop may be ejected from the capillary surface when, for a given nozzle size, the 
discharge rate is above a certain critical value. The ejection of the drop is due to the 
formation of a concave region with a large curvature near the symmetry axis of the 
fountain. The formation of the concave region is entirely due to the presence of surface 
tension forces. 

The problem of the fluid emerging from a nozzle is clearly a free-boundary problem: 
the area of the capillary free surface increases rapidly in time, with the shape of the free 
boundary undergoing extremely large deformations. In order to study this problem, 
great gains can be made by taking the fluid to be inviscid and incompressible and 
assuming the flow to be irrotational. The resulting problem, in which the fluid velocity 
can be expressed in terms of a velocity potential, presents a natural basis for an integral 
formulation which is of particular interest when one is primarily concerned with the 
dynamics of a free boundary. A large body of literature exists in which an integral 
formulation has been applied to a variety of potential flows involving free boundaries. 
If we restrict ourselves to the literature involving the dynamics of (axisymmetric) 
capillary surfaces we find only a small number of papers. Nonlinear oscillations of 
liquid drops were studied by Lundgren & Mansour (1 988) and Pelekasis, Tsamopoulos 
& Manolis (1992) while the dynamics of liquid shells was the subject of a study by 
Pelekasis, Tsamopoulos & Manolis (1991). The impact of a drop on a liquid surface 
has been investigated in a number of articles, see for example Oguz & Prosperetti 
(1990~) .  

A common denominator in almost all numerical studies employing an integral 
formulation of potential-free-surface flows is the appearance of short-wavelength 
instabilities. While various techniques haven been used to eliminate these instabilities, 
the underlying mechanism causing the instabilities is still a subject of some discussion. 
It is not our aim in this paper to enter into a detailed discussion of the short-wavelength 
instabilities, for this the reader is referred to Dold (1992) and Pelekasis et al. (1992). In 
the work presented here, short-wavelength instabilities were also found to be present. 
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However, at least as important as the prevention of these instabilities is the control of 
the numerical discretization error. In the problems we have considered, the volume of 
fluid bounded by the capillary surface increases linearly with time. Owing to the 
incompressibility of the fluid, it follows that the surface area of the capillary surface 
must increase proportional to tf. This implies that the number of nodes on the capillary 
surface must increase continuously in order to control the discretization error. A 
mechanism to add nodes to the free surface in a well-defined manner to control the 
discretization error and to prevent the occurrence of short-wavelength instabilities is a 
crucial aspect of the numerical implementation presented here to study the evolution 
of capillary fountains. 

In $2 we present the governing equations which are written in integral form. Details 
of the numerical discretization are discussed in $3. Owing to the enormous movement 
of Lagrangian nodes, extensive regridding is required in order to prevent certain 
regions of the fountain being completely devoid of nodes. This is in addition to the fact 
that short-wavelength instabilities are observed whenever two Langrangian nodes 
move too close together. No explicit smoothing is used since the regridding operation 
was sufficient to prevent the occurrence of instabilities. Our regridding strategy and the 
choice of the time-integration scheme are discussed in $4 and results of our calculations 
are presented in $ 5 .  In 56 we present some experimental results which appear to 
confirm some of our numerical predictions. Finally, in $7 we present our conclusions. 

2. Problem formulation 
The problem to be considered in this paper is shown schematically in figure 1. A 

cylindrical nozzle with radius R is positioned such that the outlet points vertically 
upwards. We assume that initially the capillary surface is flat and situated at the mouth 
of the nozzle. At some time t = 0 fluid is ejected from the nozzle at a constant rate 
resulting in a capillary fountain above the nozzle. Let the (time-dependent) domain 
occupied by the fluid be denoted by Q(t) .  The boundary of Q(t),  denoted by 2Q, 
consists of three different parts : a capillary free boundary denoted by S(t), the rigid side 
of the nozzle denoted by B and a boundary r on which the normal velocity is 
prescribed. We assume that Q(t) is axisymmetric, and henceforth 3 0 ,  S(t), B and r 
denote curves in the ( r ,  2)-plane. The z-axis, pointing vertically upwards, is taken to be 
the symmetry axis of our domain and the gravitational force acts downwards along the 
negative z-axis. 

The governing equations will be written in dimensionless form with the radius of the 
nozzle as the characteristic lengthscale ; the characteristic timescale is given by 
T = (pR3/n)t ( p  is the fluid density and n is the coefficient of surface tension) and a 
pressure scale is given by P = n/R. We assume that Q(t) is occupied by an inviscid 
incompressible fluid. The flow is assumed to be irrotational and hence the velocity field 
in Q(t) can be described by a velocity potential $ which satisfies Laplace’s equation. 
Rotational symmetry in a cylindrical coordinate system yields 

The rigid side B of the nozzle is situated at r = 1 while we assume that the nozzle inlet 
T is positioned at z = 0 and the nozzle outlet is at z = 1. The boundary condition on 
B is given by 
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r r = I  

FIGURE 1. Schematic diagram of a capillary fountain 

while the normal velocity is prescribed on T, giving 

31 = wetY(r>, (3) 
az n-0 

in which Y ( r )  denotes the dimensionless flux and We = pRV2/c  is the Weber number 
with V a measure of the normal velocity. 

Three boundary conditions are specified on the capillary free surface S(t): two 
kinematic conditions, namely 

and a dynamic boundary condition relating the pressure jump across the capillary 
interface to the curvature of the interface via 

1 1  
= $7q512 + - + - + p o  - BO Z. 
3 
Dt R, R2 

( 5 )  

In the above equations D/Dt = a /2 t  + (V$- 0) denotes a Lagrangian time derivative, 
n = (nr, n,) is a unit vector normal to the capillary surface and s denotes the arclength 
along the capillary surface (in the counterclockwise direction). R, and R, are the 
principal radii of curvature of the free surface, p o  is a pressure constant which is defined 
by the equations governing the static surface and the dimensionless Bond number 
Bo = p g R 2 / c  is a measure of the ratio of gravitational and surface tension forces. The 
unit normals and the radii of curvature, expressed explicitly in terms of quantities only 
defined in the capillary surface, are give by 
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in which the subscript s denotes a derivative with respect to the arclength coordinate 

To complete the description of the problem we require a suitable set of initial 
conditions. We assume that at t = 0 the fluid is at rest. The free surface is situated at 
the mouth of the nozzle (at z = 1) and is assumed to be flat. These assumptions 
determine p o  in ( 5 )  via p o  = Bo. For t > 0 we assume that the fluid enters the nozzle at 
z = 0 with the velocity given by (3). One could argue that these initial conditions are 
unphysical in that an infinite acceleration is required at t = 0 in order to obtain a 
constant mass flux for t > 0. However, the initial conditions can also be viewed in the 
following way. Assume that for t < 0 a flat capillary surface advances through a 
cylindrical tube and that the capillary surface reaches the end of the tube at t = 0. In 
this case it is, of course, debatable to what extend the assumption that the capillary 
surface is flat at t = 0 is valid. Indeed, this assumption is likely to be invalid in most 
practical situations, see e.g. Dussan V., Rame & Garoff (1991). There are, however, 
many unanswered questions related to the problem of a capillary surface rising in a 
tube, the shape of the surface being one. A detailed discussion of this problem is 
beyond the scope of this paper and the assumption of a flat initial surface should be 
regarded as a first-order approximation. 

It is well-known (cf. Dommermuth & Yue 1987) that finding the solution of the 
problem defined by (1) subject to the boundary conditions (2) and (3) is equivalent to 
solving the integral equation 

S. 

@(x’) G(x,  x’) r’ ds(x’) + We3 Y(x’) G(x, x’) r’ ds(x’), (7) 

in which we use the notation 4 = a$/&, and G(x, x’) denotes the Green’s function for 
the Laplace equation in cylindrical coordinates, 

= s, s, 
4 

P t  
G(x, x’) = -K(m), x = (Y, z), x’ = (r’, z’), 

pk = [(r f r’)’ + ( z  - z’)’]+, m = 1 -p!/p:, 
with K(m) denoting the elliptic integral of the first kind. The first integral in (7) is 
understood in the sense of the Cauchy principal value and the parameter CL in (7) is the 
solid angle at the point x on the boundary subtended by the fluid domain. 

3. Numerical approximation 
In order to obtain a discrete set of equations we divide the boundary of Q(t)  into N 

elements. On each element the velocity potential and the flux are approximated by 
linear interpolating functions. Thus, for the potential on element ej with nodes xj and 
xj+l and $(xj) = i j  we take 

= 4j n , ! w  + i j + l  h;2’(8n, 
Ajqg = 1 - 5, h,!2’(QD, [ €  [O, 11, 

and likewise for the fluxes. Substituting the approximations for $ and @ as given above 
into the integral equation (7) and defining matrix elements via 
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it follows that the discrete equivalent of the integral equation (7) is given by 

1V A7 

C Hijq5i = C Gijy?,, . j  = 1, ..., N .  
i=l i=l 

The integrals for the elements Hi,, Gij (i + j )  are regular and are evaluated using a 
standard four-point Gauss interpolation formula. The elliptic functions in the 
integrands are evaluated using polynomial approximations given by Abramowitz & 
Stegun (1972). The integrands in the integrals for the elements Gii contain logarithmic 
singularities. These integrals are evaluated using a special four-point Gauss formula for 
integrals with logarithmic singularities. The diagonal elements Hit (corresponding to 
the singular points in the integrand) are calculated indirectly in the following way. If 
the potential is constant throughout Q(t)  then y9 = 0. From (8) it follows that for any 
constant potential we require 

N 

C Hii q5j = 0. 
i=l 

In particular, taking q5j = 1 it follows that the diagonal elements are given by 

Iv- 
Hii = - C H . .  . 5;: 

Without elaborating we point out that on the capillary surface the fluxes are 
unknown while on the nozzle inlet and the nozzle wall the potentials are unknown. This 
implies that columns of matrices G and H in (8) have to be rearranged in order to bring 
all the unknowns to one side of the equation. Note also that columns in G that refer 
to the nodes on the side of the nozzle for which y? = 0 need not be calculated. 

Let us next consider the dynamic and kinematic boundary conditions on the capillary 
surface. The unit normals and the curvatures at node xi ,  say, are calculated by fitting 
a locally quadratic spline through xi  and its neighbouring points, 

h (1) (6) = it([- l), A‘2’([) = 1 -t2,  A(3) ( [ )  = it(&+ l), & € [ -  1,1]. 

Using (9) we get for example 

dr d[ drl =--I = J, k + 1 -  T Z - l ) .  
ds x=xz d t d s  x=xz 

where J ,  = (d[/ds)l,=,, is the Jacobian, which we assume constant. Similar results hold 
for z,, r,, and z,,. At the point at which the free surface intersects the symmetry axis 
we have the conditions z ,  = 0, r ,  = - 1 so that n, = 0 and n, = 1. At this point the 
principal radii of curvature are identical, i.e. R, = R, and z,, is calculated using 
symmetry considerations. Finally, to evaluate the tangential derivative aq5/o?s at node 
i, say, we fit a locally quadratic spline through $Z and its neighbours, similar to (9). 
Note that a$/i . ‘s = 0 on the symmetry axis. 
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After having applied the discretization procedure as outlined above, the conditions 
on the capillary surface can be written as 

in whichf,, f, and f, are in general nonlinear functions of their arguments. Together 
with suitable initial conditions, (10) constitutes an initial-value problem where the 
relation between 4 and y is provided by the discretized integral equation (8), 

Hd = GI. (1 1) 

In (10) and (1 1) the bold, lower-case quantities refer to vectors, the elements of which 
refer to variables at the nodal points. 

4. Time stepping and regridding 
In the next section we present results that assume a constant mass flux through the 

nozzle. The volume enclosed by the capillary surface is therefore proportional to t and 
hence the area of the capillary surface is proportional to t;. This implies that, given an 
initial distribution of nodes, the average distance between two nodes increases steadily. 
It turns out that the evolution of the capillary surface is by no means uniform. We find 
that there are regions on the capillary surface in which the flow is largely divergent 
while other regions exist in which the flow is predominantly convergent. This leads to 
large variations in the movement of Lagrangian nodes with the effect that some regions 
of the free surface become severely depleted of nodes while other regions have a large 
concentration. 

The uneven distributions of Lagrangian nodes has two undesirable effects. First, the 
regions that are depleted of nodes can have significant curvatures. This means that large 
discretization errors are introduced in the calculation of the unit normals and 
curvatures. Secondly, like in many previous studies, we find short-wavelength 
instabilities in regions with a large concentration of Lagrangian nodes. These two 
points force us to consider some sort of regridding procedure. 

Before we proceed with a detailed discussion of the regridding procedure, let us first 
discuss the implications of regridding on the choice of the time-integration scheme. 
With regridding it is not desirable to employ multi-step schemes. Namely, the use of 
multi-step schemes would require extensive use of interpolations in order to determine 
the ‘true’ position of the Lagrangian node at the new time level. These interpolations 
introduce extra discretization errors, in particular when higher-level schemes are used. 
Single-step schemes are clearly advantageous, although somewhat more expensive due 
to the increased number of function evaluations required as compared with multi-step 
schemes of the same accuracy. In our calculations we have employed a slight modified 
fourth-order Runge-Kutta scheme. The modification consists of the assumption that 
the matrices G and H in (1 1) are constant during one complete time step. At the cost 
of some loss of accuracy during the time integration, this assumption leads to 
significant savings in computer time, which is dominated by the calculation of the 
matrix coefficients. Dommermuth & Yue (1987) have used a similar approximation in 
their calculations. 

The Runge-Kutta scheme is not unconditionally stable. For the problem under 
consideration the stability condition is of the form 

At 5 O(AxLta), (12) 
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where Axmin is the minimum distance between any two adjacent nodes on the free 
surface. This condition follows from the well-known stability criterion for a fourth- 
order Runge-Kutta scheme, At < v ’ is /w (w being the maximum frequency in the problem 
under consideration), and the fact that waves dominated by capillary effects typically 
have frequencies which are of the order ki, where k denotes the wavenumber 

Let us return to the problem of regridding. The stability condition (12) requires that, 
whatever regridding strategy we choose, for a given time step A t  the minimum distance 
between Lagrangian nodes should be bounded below. Since we do not know in general 
what the lower bound is, it seems natural to take the lower bound to be the minimum 
distance between any two adjacent nodes of the initial distribution (assuming that the 
time step is sufficiently small for stable integration with the initial distribution). This 
procedure ensures that the stability condition (12) will not be violated during the time 
integration. During the time integration the distribution of nodes is modified in the 
following way. After a given number of time steps the nodes are redistributed over the 
surface so as to maintain an even distribution of nodes. A node is added to the surface 
whenever the surface area has increased sufficiently to add an extra node without 
violating the lower bound of the element size as defined above. Since the CPU time per 
time step increases rapidly as the number of nodes increases, we have set an upper limit 
to the total number of nodes (typically N - 120). Once this upper limit is reached we 
allow the element size on the free surface to increase while regridding is used to 
maintain a uniform distribution of nodes on the free surface. 

To calculate the position of the new node and the value of the velocity potential at 
the new node we adopt the following strategy. Given an uneven distribution of nodes 
at some time during the integration procedure. We calculate new nodal positions such 
that the distance between the nodes (measured along the connecting line elements) is 
equal for all nodes. Calculations show, however, that restricting the positioning of new 
nodes to the line elements connecting the old nodes has a strong stiffening effect and 
leads to mass loss during the time stepping. This is because the lines joining the new 
nodes always lie entirely within the fluid domain for a convex surface. To overcome this 
problem the position of the new node is calculated using locally cubic splines. For 
example, if a new node is situated between original nodes with vertices i and i+ 1, a 
locally cubic spline is calculated using the values at the nodes i- 1, . . ., i+ 2. The new 
node is then moved from the line joining nodes i and i+ 1 to the position on the cubic 
spline such that the relative distance between the new node and the nodes i and i+ 1 
remains unchanged. In all calculations presented henceforth we have updated the mesh 
after each time step in the way outlined above. 

We point out that it is not clear apriori which criteria to adopt for the repositioning 
of the nodes on the surface. While the strategy outlined above proved satisfactory, 
different approaches are possible. In our calculations the mass loss is not completely 
eliminated and a criterion for an alternative regridding approach could be to minimize 
mass loss. An additional concern is the possible dissipation of energy as a results of the 
regridding operation. In the Appendix we show that while our regridding operation 
dissipates energy, the energy loss is small on the timescales of interest. Oguz & 
Prosperetti (1 990a) have also employed a regridding approach in which a fixed element 
length is maintained. In addition they stagger the position of the nodes at alternating 
time steps. It is not transparent what the advantage is of staggering the nodes since 
additional damping had to be introduced to maintain stability. It appears that an 
efficient distribution of nodal points may be obtained by relating the nodal distribution 
to the curvature of the free surface, cf. Van de Vorst, Mattheij & Kuiken (1992). An 

(k,,, - WXrnin). 
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advantage of this approach is that strongly curved regions have a higher concentration 
of nodes than the regions with a smaller curvature. Stability requires, however, that the 
smallest element be bounded below, regardless of the distribution of nodes. In 
addition, calculations in the next section show that physical bifurcations can occur in 
regions that are not strongly curved. It will be clear that a fine distribution of nodes 
is required in order to resolve the bifurcation point even when the surface is not 
strongly curved. 

5. Discussion and results 
Numerical experiments show that for a given Bond number and a given volume flux, 

the evolution of the capillary surface is remarkably independent of the precise form of 
Y(r). It seems appropriate therefore, to present results in terms of the discharge rate 
22, defined via 

The minus sign indicates that fluid enters the nozzle at z = 0. In all the numerical 
experiments in this section we have taken the flux to be of the form Y(r) = - 1 so that 
the discharge rate is related to the Weber number via 22 = 7cWe;. 

Let us now investigate the evolution of the fountain for different values of the Bond 
number and the discharge rate 2. In all calculations the nozzle inlet and the side of the 
nozzle were discretized using four elements of equal size. The initial discretization of 
the capillary surface consists of 32 equally spaced nodes - the number of nodes on the 
surface increasing rapidly as time increases. We allow the number of nodes on the free 
surface to increase until the total number of nodes on the boundary is equal to 120. The 
time step is fixed during the time integration at At = 5 x lop4 whenever t E [0, 0.151 and 
t 3 0.25, while we take At = 5 x lop4 for tE(O.15,0.25). The reason for changing the 
time step is that the free surface accelerates near t = 0.2 as will become apparent 
shortly. 

First consider the case Bo = 1.0. For the discharge rates 2 = 4,6 we have plotted the 
shapes of the evolving fountain in figure 2(a, b)  at the times indicated in the plots. The 
case 2 = 4 results in a slowly evolving fountain as shown in figure 2(a).  Speaking of 
a fountain in this case is somewhat artificial since the capillary surface clearly evolves 
as a growing sessile drop at the end of the nozzle. We observe that as the capillary 
surface emerges from the nozzle the surface is flat near the centre with a small rise of 
the surface near the rim of the nozzle. The height of the mountain grows and small 
undulations near the symmetry axis are apparent. The amplitude of these undulations 
grow, resulting in a trough around the symmetry axis at t = 0.2. After the free surface 
emerges from the trough we observe the evolution of the fountain into a drop which 
reaches a maximum height above the nozzle near t = 1.5. Subsequently the drop starts 
to sag over the mouth of the nozzle and the calculation has to be terminated when the 
free surface intersects the side of the nozzle. While dynamic effects are clearly 
important during the initial phase of the evolution, it seems that after t = 1 .O the shape 
of the growing drop is only slightly modified by dynamic effects. This appears in 
agreement with what one would expect intuitively. Namely, for small discharge rates 
one would expect the shape of the drop to be determined mainly by its volume and the 
Bond number. In that case the shape of the growing drop can be regarded, more or less, 
as a succession of static drop shapes. 

When the discharge rate is increased to 2 = 6 (figure 2b)  the evolution of the 
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I It = 0.05(0.05) 0.5 

t = 0.05(0.05) 0.5 

I t = 3.0(0.5) 4.5 1 t = l.O(O.5) 2.5 

t = 0.75(0.25) 2.0 I t = 2.25(0.25) 3.5 I 
FIGURE 2. Free-surface shapes of an evolving fountain for the parameters Bo = 1.0 and (a) 1 = 4, 

(6) 2 = 6. The times are indicated on the plots. 

fountain is fundamentally different from that seen in figure 2(a).  First, we observe that 
the trough near the symmetry axis has become more localized, with the height of the 
fountain increasing rapidly as it emerges from the trough. This leads to a pronounced 
protuberance at the symmetry axis. Subsequently the height of the fountain continues 
to increase with the fountain assuming a columnar structure. Near t = 2.0 the fountain 
reaches a maximum height after which its head starts to expand. It is interesting to note 
that as the radius of the head grows, the contribution to the pressure in the head from 
capillary forces decreases. Hence, whenever capillary forces are important (as is the 
case when Bo = 1.0) the reduction in pressure is significant when the radius of 
curvature increases. The head will therefore act as a fluid sink, resulting in the 
increasing growth of the head. We observe that fluid lobes form as a result of the 
continued growth of the volume of the head. After some time the lobes have grown so 
much that the free surface folds back onto itself. At this point the calculation has to 
be terminated. It will be clear that dynamic effects are of major importance with regard 
to the shape of the evolving fountain. This is in contrast with the observations for 
2 = 4. 

A very interesting change in the evolution of the fountain occurs when for the Bond 
number Bo = 1 the discharge rate is increased to 2 = 7. In figure 3 we show the 
different stages of the evolution of the fountain for these parameters. We observe that 
during the initial phase of the evolution the dynamic behaviour is very similar to that 
observed in figure 2(b). Namely, the capillary surface is flat near the centre with a small 
rise of the surface near the rim of the nozzle. Subsequently the height of the rim 
increases and undulations develop near the centre. We observe that the amplitude of 
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FIGURE 3. Free-surface shapes of an evolving fountain for the parameter values Bo = 1 and 
22 = 7. The times are indicated on the plots. 

the undulations increases and a deep trough develops around the symmetry axis. 
Subsequently, the capillary surface accelerates fast out of the trough resulting in a very 
large protuberance at the symmetry axis. The tip of the protuberance is rounded and 
after some time we observe that necking occurs just below the tip of the protuberance, 
indicating that a drop is formed. Our calculations appear to indicate that the 
emergence of the capillary surface from the trough is so fast that a drop of fluid is 
ejected from the free surface. 

In order to understand the results of these calculations, it is important to realize that 
surface tension is the physical effect governing the intricate dynamics of the growing 
fountain. If surface tension were not present, the fluid region emerging from the nozzle 
would have sharp edges. Surface tension effects lead to a rounding of the edges, 
effectively by inhibiting the flow close to the walls of the nozzle. Fluid near the walls 
of the nozzle is therefore deflected inwards which, together with concervation of mass, 
results in the rim on the surface seen in figures 2 and 3 .  As the fluid rim grows and 
moves inwards we have observed that undulations occur on the free surface near the 
symmetry axis. These undulations are capillary waves generated by the inward-moving 
rim. Owing to the rotational symmetry, the amplitudes of the inward moving capillary 
waves increase as the radius of the wave front shrinks. The result is a large deflection 
at the symmetry axis, turning into a trough as the rim converges on the symmetry axis. 
The trough deepens until the action of surface tension forces prevent a further increase 
in the curvature of the trough. Subsequently fluid is effectively catapulted out of the 
trough by the action of surface tension forces trying to eliminate regions with a high 
curvature. The overshoot of this catapulting action is the protuberance at the 
symmetry axis which is observed in figures 2 and 3. The calculations indicate that the 
catapulting action can be so strong that a drop is ejected from the capillary surface. The 
curvature of the trough depends on the discharge rate. It is only above a ‘critical 
discharge rate’ that the curvature becomes large enough to accelerate the fluid 
sufficiently fast in order to eject a drop. 

The formation of the trough is intimately linked with the fact that the two timescales 
that govern the evolution of the fountain become increasingly separated. The inertia 
timescale, given by TI  = R / V  ( V  being the characteristic velocity), decreases as the 
discharge rate increases. A ‘global’ capillary timescale, defined in $2 as T, = (pR3/v) i ,  
is essentially constant as long as the typical radius of curvature is of the order of the 
radius of the nozzle. Hence, if we have T, % (which is equivalent to the condition 
Wd + 1 or 9 % 1) the evolution of the fountain is fast compared with the capillary 
scale T,. This means that capillary forces have insufficient time to ‘smooth’ the free 
surface and, as a result, large curvatures can develop. Once the localized region with 
a large curvature has developed, the global capillary timescale is no longer the relevant 
timescale. A ‘local’ capillary timescale, with the radius of curvature of the trough as 
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FIGURE 4. Free-surface shapes of an evolving fountain for the parameter values Bo = 1 
and (a) L? = 10, (b) 9 = 14. The times are indicated on the plots. 

the characteristic length, is then the typical timescale on which capillary effects act. 
This ‘local’ capillary timescale is much smaller than the ‘global’ one, reflecting the 
rapid evolution of the free surface as it emerges from the trough. 

When the discharge rate is increased above the critical discharge rate at which 
bifurcation occurs we find that the trough deepens and the curvature of the trough 
increases. In figure 4(a) we show the evolution of the fountain for the parameters 
Bo = 1 and 9 = 10. Often, as in this case, we are not able to continue the numerical 
integration to the point at which bifurcation occurs after fluid is ejected from the 
trough. The reason is that as fluid accelerates out of the trough the calculation often 
breaks down because the first free-surface node after the node already placed on/ the 
axis intersects the symmetry axis. This can only be prevented by resorting to excessive 
smoothing which, of course, also effects the subsequent dynamics. Recall that in none 
of the calculations presented here explicit smoothing is required. 

When the discharge rate is increased further, interesting effects occur. For the 
parameter values Bo = 1 and 2 = 14 we observe in figure 4(b) that the depth of the 
trough together with the increased discharge rate leads to the closure of the trough at 
the top. Apparently the evolution is so fast that capillary forces have insufficient time 
to catapult fluid out of the trough. This leads to the rather surprising result that for 
certain discharge rates an air bubble is entrained by the capillary surface. Increasing the 
discharge rate further is not always clear if an air bubble will be entrained or not since 
sometimes the calculation breaks down before the capillary surface closes above the 
trough. However, for discharge rates up to 2 = 30 our calculations indicate that air 
bubbles can be entrained. It is interesting to point out that bubble entrainment by 
axisymmetric capillary surfaces also occurs in an entirely different context. Namely, if 
a drop impacts on a liquid surface a bubble may be entrained depending on the impact 
velocity and the drop diameter, see for example Oguz & Prosperetti (1990~).  In order 
to explain the mechanism leading to the entrainment of the bubble, Oguz & Prosperetti 
(1990b) suggested that the effect could be due to an axisymmetric wavefront 
converging on the symmetry axis. Their calculations indicated that this was indeed a 
possible entrainment mechanism, which is in agreement with our results. 

So far we have investigated the evolution of the fountain as a function of the 
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FIGURE 5. Free-surface shapes of an evolving fountain for the parameter values Bo = 10 
and (a) d = 4, (b)  A? = 6 ,  (c) 2 = 7. The times are indicated on the plots. 

discharge rate for the Bond number Bo = 1. In order to assess the effect of the Bond 
number we take Bo = 10 and again study the evolution of the fountain as a function 
of the discharge rate. In figure 5(a-c) we have plotted the evolution of the fountain for 
the discharge rates 2 = 4, 6 and 7 respectively. We observe that for 3 = 4 (figure 5a)  
the initial stage of the evolution is qualitatively the same as that seen in figure 2(a).  
Between t = 0.5 and 1.0 in figure 5(a)  we observe a drop-shaped surface which does not 
change dramatically. Again we believe that the shape of the drop is mainly determined 
by the Bond number and the volume of the drop. After t = 1.0 we see that the volume 
of the drop has grown so much that lobes form which fall over the sides of the nozzle. 
Eventually the lobes intersect the sides of the nozzle at which point the calculation has 
to be terminated. 
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When, with Bo = 10, the discharge rate is increased to 2? = 6 we observe (figure 5b) 
that dynamic effects have a significant effect on the shape of the fountain throughout 
the evolution. First, we note that the protuberance at the symmetry axis is more 
pronounced that for 9 = 4. We see that the fountain reaches a maximum height near 
t = 0.5 after which the height decreases significantly. The lobes that form fall over the 
side of the nozzle. The lobes continue to grow with the result that part of the nozzle 
is momentarily surrounded by a fluid curtain. Eventually the calculation is terminated 
because the fluid curtain can no longer sustain the weight of the ring of fluid at the 
bottom of the curtain ~ a bifurcation occurs in the fluid curtain. An interesting 
observation is that after a significant decrease, the height of the fountain attains a more 
or less fixed value. It is clear that the pressure of the flow emerging from the nozzle 
prevents a further decrease of the height. 

Let us next consider the evolution of the fountain for the parameters Bo = 10 and 
9 = 7. Recall that for the same discharge rate and Bo = 1 a drop was ejected from the 
free surface. In figure 5 (c) the free surface is shown at different stages of the evolution. 
We note the large protuberance near t = 0.25. However, the acceleration is clearly not 
sufficiently strong to eject a drop from the free surface. The subsequent evolution is 
very similar to that seen in figure 5(b). After reaching a maximum near t = 0.5 the 
height of the fountain decreases significantly as the lobes form. Again we see the 
formation of a fluid curtain around the nozzle and, eventually, the bifurcation of the 
fluid curtain. 

The foregoing results suggest that increasing the Bond number has a stabilizing effect 
in the sense that a larger discharge rate is required to yield a bifurcation. This is not 
unexpected since the capillary surface is flattened by large Bond numbers. While the 
critical discharge rate, 9cT2t, increases with increasing Bond number, we find that this 
increase is only gradual. For example, for Bo = 10 we find gCrzt = 8, for Bo = 50 we 
find 2Jccrit = 9 and for Bo = 100 the critical discharge rate is 2JCcrit = 13. Increasing the 
discharge rate beyond 2Ccrzf we find that an air bubble may be entrained for a sufficiently 
small Bond number. Only for Bond numbers less than 30 did we observe entrainment 
of a bubble, for larger Bond numbers entrainment was never observed. As was pointed 
out before, owing to numerical difficulties it was often not possible to establish beyond 
doubt whether entrainment would occur. It is important to realize that these numerical 
difficulties may indicate very violent physical effects. It is for example, not at all clear 
what would happen physically if the top of the trough were to close just at the point 
at which the bottom of the trough is accelerating upwards. 

It turns out that interesting information regarding the dynamics of the evolving 
fountain can be obtained by considering its height as a function of time for different 
parameters. We define the height H of the fountain to be the height of the capillary 
surface at the symmetry axis measured from the mouth of the nozzle. For the discharge 
rates 2 = 3,5,7,9 and the Bond numbers Bo = 1 (solid lines) and Bo = 10 (dotted 
lines), figure 6 shows graphs of the height of the fountain as a function of time. There 
are a number of interesting points to note. First, we observe that during the initial stage 
of the evolution the height of the fountain is not affected by the Bond number. Only 
after t = 0.2 do we observe that the effect of increasing the Bond number is to decrease 
the maximum height attained by the fountain. Up to t = 0.1 the height of the fountain 
increases linearly with time with no dependence on the Bond number. To a very good 
approximation the height of the fountain up to t = 0.1 is given by H(t) = 2Jt/2.91 
which is somewhat higher than the value H(t) = &/n: that one would get if the fountain 
would emerge from the nozzle as a perfect cylinder with sharp edges. 

The oscillatory increase of the height between t = 0.1 and 0.2 is due to the 
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FIGURE 6. The height H of the fountain above the nozzle versus time for the discharge rates 
9 = 3,5,7,9 and the Bond numbers Bo = 1.0 (solid line) and Bo = 10 (dotted lines). 

convergence on the symmetry axis of the concentric capillary waves propagating in 
advance of the fluid rim as seen in figures 2-5. The amplitudes of the oscillations 
increase and just before t = 0.2 we observe a significant decrease in the height of the 
fountain at the symmetry axis, being the point at which the trough develops. 
Subsequently the height at the symmetry axis increases rapidly as the surface 
accelerates upwards out of the trough. The calculation is terminated due to the ejection 
of a drop when Bo = 1 and 2 = 7 or due to the intersection with the symmetry axis of 
free-surface nodes in the trough when 2 = 9 and Bo = 1,lO. 

For the discharge rate 2 = 3 we observe that after the fairly rapid increase t = 0.2 
the height of the fountain increases slowly in an oscillatory manner. It appears that the 
rapid transition caused by the fluid emerging from the trough excites an eigenmode of 
the growing fountain. As was evident from the plots in figures 2(a) and 5(a), the 
fountain evolves slowly as a sessile drop when 2 = 4. While the eigenvalues of the 
growing drop are time dependent, an eigenmode may be excited when the variation of 
the eigenvalues with time is small enough. The oscillatory growth is also apparent in 
figure 5 (a) at the times 0.5 < t < 1 .O. We observe that for the larger discharge rates no 
clear oscillatory behaviour is present. The reason is that for the larger discharge rates 
the eigenfrequencies of the fountain change too fast for an eigenmode to be excited. 

Let us next investigate in some detail the maximum height attained by the fountain. 
As was clear from figures 2 and 5, the height of the fountain varies significantly with 
the discharge rate and the Bond number. In all cases presented we see that the height 
of the fountain increases, reaches a well-defined maximum and subsequently decreases 
before the calculation breaks down. We have plotted the maximum height H,,, as a 
function of the discharge rate 2 for different values of the Bond number in figure 7. We 
observe that for small values of the 2 (2 < 4) the maximum height of the fountain 
is virtually independent of the discharge rate. The reason for this behaviour, as 
explained earlier, is that when 2 is small the shape of the fountain is essentially a sessile 
drop which grows slowly at the mouth of the nozzle (cf. figures 2a and 5a). The shape 
of the growing drop is mainly determined by its volume and by the balance between 
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surface tension and gravitational forces while dynamic effects are small. Increasing the 
discharge rate beyond 9 = 4 we see that the maximum height increases with increasing 
discharge rate. 

From the foregoing discussion, in which we have considered the evolution of the 
fountain for different values of the parameters Bo and 9, it emerges that four evolution 
regimes may be identified. The parameter range in which each of the four evolution 
patterns exists has been determined by means of numerical experiments. Figure 8 
shows the four different regimes in the (9, Bo)-plane. For small discharge rates 
(2 < 4, regime I) the fountain is more accurately described by a sessile drop which sags 
over the side of the nozzle as the volume of the drop increases. Dynamic effects are of 
minor importance during a significant part of the evolution: the shape of the drop is 
largely determined by its volume and the Bond number. Regime I can therefore be 
referred to as the quasi-static regime. The most important characteristic of regime I is 
that the maximum height attained by the fountain is independent of the discharge rate 
(cf. figure 7). Examples of fountains in this regime are given in figures 2(a)  and 5(a).  

When dynamic effects become important (9 > 4) three different regimes may be 
identified. In regime I1 dynamic effects are important while the discharge rate is below 
the critical discharge rate. For small Bond numbers regime I1 is characterized by the 
evolution of the fountain into a mushroom-like configuration with the head of the 
fountain folding onto the column supporting the head (cf. figure 2b). For larger Bond 
numbers the evolution in regime I1 is characterized by a significant decrease of the 
height of the fountain after the maximum height has been attained. Fluid falls over the 
side of the nozzle resulting in a fluid curtain surrounding the nozzle (cf. figure 5 b, c). 
Regime I11 is characterized by the ejection of a drop from the free surface (cf. figure 
3). The critical discharge rate increases with increasing Bond number. For still larger 
discharge rates (regime IV) we find that an air bubble may be entrained by the capillary 
surface when the Bond number is sufficiently small (cf. figure 4b). 
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FIGURE 8. Four identifiable regimes in the dynamics of evolving capillary fountains. 
The different regimes are explained in the text. 

6. Experimental results 
In order to verify some of our numerical results some simple experiments were 

carried out. A number of stainless steel nozzles were constructed, each 6 cm long with 
diameters equal to R = 5,8,10 and 12 mm. The end of each nozzle through which fluid 
was ejected was tapered to produce a razor-sharp rim. Prior to an experiment, the 
nozzles were cleaned thoroughly (with trichloro-trifluoro-ethane), carefully levelled 
and connected through a plastic tube (approximately 40 cm long) with a 12 V 
washerpump. In all the experiments de-ionised water was used as the working fluid. We 
assume a value for the surface tension coefficient of cr = 7.2 x lop2 N m-l which 
corresponds to that of a pure air-water interface. Since purified water is highly prone 
to contamination by organic materials this value of cr should, however, be regarded as 
only a rough approximation to the true value. With this value of the surface tension 
coefficient it follows that the Bond numbers corresponding to the different nozzles are 
equal to Bo = 0.85,2.2,3.4,4.9. 

An obvious difficulty one encounters in the experiments is how to obtain initial 
conditions that are as close as possible to the initial conditions employed in the 
numerical work. There we assumed that at some time t = 0 the free surface was flat and 
positioned at the mouth of the nozzle. For t > 0 fluid was ejected from the nozzle at 
a constant rate. In order to obtain this situation in practice one would require a pump 
that accelerates the fluid on a timescale small compared with the capillary timescale 
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FIGURF 9. The maximum height attained by the fountain as a function of the discharge rate. The 
symbols correspond to the experimental results, the line is the numerical result. (a) Bo = 2.2, 
(b) Bo = 3.4, (c) BO = 4.9. 

( p R 3 / ~ ) i .  For nozzles with a radius of approximately 0.5 cm the capillary timescale is 
of the order of s. Accelerating fluid in a fraction of this time is however not 
possible with the pump we used. To overcome this problem we opted to allow the fluid 
to accelerate by switching on the pump when the Auid surface was approximately 5 cm 
below the mouth of the nozzle. By measuring the height attained by the fountain, we 
found that the maximum height was independent of the distance of the initial Auid 
surface below the mouth of the nozzle provided this distance was larger than 
approximately 4 cm. This suggests that a distance of 5 cm is sufficient to accelerate the 
fluid with the pump we used. Note that allowing the fluid to advance through the 
nozzle leads to the difficulty pointed out earlier: the shape of an advancing capillary 
surface in a nozzle is not horizontal when it leaves the mouth of the nozzle. An 
additional difficulty with the advancing capillary surface in the nozzle is that the 
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symmetry is often lost due to the uneven advance of the contact line. The best remedy 
for this problem was to wet the inside of the nozzle by switching the pump on and off 
immediately prior to an experiment. Then, after the fluid surface had retreated to its 
starting level, the pump was switched on for the experiment. While this procedure lead 
to a significant improvement, asymmetries were still not completely eliminated in most 
experiments. 

As a test of our numerical work it is interesting to see if our prediction that, for small 
discharge rates, dynamic effects are of minor importance in relation to the shape of the 
fountain is confirmed in experiments. For the smallest nozzle with corresponding Bond 
number Bo = 0.85 symmetry of the fountain was generally lost before the maximum 
height was attained. In addition, it was hard to control small volume fluxes (such as 
22 < 6 for a 2.5 mm nozzle). For the three larger nozzles the fountain did reach a well- 
defined maximum before symmetry was lost. In figure 9(a-c) we show the maximum 
height attained by the fountain as a function of the discharge rate for the Bond 
numbers Bo = 2.2,3.4 and 4.9 respectively. The line represents the numerical solution 
and the symbols are the experimental results. The sizes of the symbols are 
approximately equal to the experimental errors. We observe that the numerical results 
agree reasonably well with the experimental values. Note in particular that the 
maximum height is virtually independent of the discharge rate when 9 d 4, which is in 
agreement with our classification depicted in figure 8. 

For large discharge rates dynamic effects are important and some interesting 
phenomena can be observed. Examples of the evolution of the capillary fountain as 
observed in experiments are shown in figure 10. The different images are selected 
frames from a high-speed film taken at 250 frames s-I. The time separation of the 
frames is indicated in the figure caption. We note that in all cases presented in figure 
10(a--d) the discharge rate is such that on the basis of our numerical work we would 
have expected signs of the ejection of a drop or the entrainment of an air bubble. This 
is however not what is observed. We will return to this point later. 

Let us first consider figure 10(a) (Bo = 0.85,2? = 14.1 k0.4). We observe that a more 
or less symmetric capillary surface emerges from the nozzle. The height of the fountain 
increases fast and after some time (the fourth frame) a neck starts to develop on the 
liquid column. As this neck moves downwards towards to mouth of the nozzle the 
radius of the neck decreases. In the last frame we observe that the neck is situated just 
above the mouth of the nozzle and the fountain starts to lose its symmetric shape. The 
smaller curvature at the head of the fountain is the reason why the necking region is 
not advected with the fluid but, instead, moves upstream towards to nozzle mouth. 
Namely, the smaller curvature of the head means that the capillary pressure in the head 
is less than that in the column supporting the head and hence the head acts as a fluid 
sink. As the head grows the capillary pressure decreases and consequently fluid is 
‘sucked’ out of the column causing the neck to move downwards. 

In figure lO(b) we observe the evolution of the fountain for the parameters Bo = 2.2 
and 2 = 10.9 f0.3. In the first frame we see a large (not quite symmetric) protuberance 
near the symmetry axis which is similar to what was seen in the numerical work. The 
protuberance is the signature of a region with large curvature which must have 
developed near the symmetry axis shortly beforehand. However, no drop is ejected 
from the surface. We observe that the fountain evolves into a mushroom-like 
configuration. In the penultimate frame there is evidence that the free surface of the 
head folds over the column supporting the head (note the sharp transition between the 
head and the column). This is, in a way, similar to what was seen in the numerical 
calculation with Bo = 1 and 2? = 6 (figure 2b). In the last frame of figure 10(b) we see 
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FIGURE lO(a). For caption see p. 245. 

that the loss of symmetry occurs at the head, presumably because the surface of the 
head folds onto the column. Any small asymmetry will be magnified very fast at that 
point. 

Figure 1O(c) shows the evolution of the fountain for the parameters Bo = 2.2 and 
9 = 24.3 f 0.2. The rapid evolution is initially very similar to that seen in figure 10(a) 
with the exception that the head is more pronounced in the present case. The 
subsequent development is, however, markedly different. In the last three frames of 
figure 1O(c) we observe that undulations develop on the column supporting the head. 
The wavelength of the undulation appears more or less constant. The column collapses 
when the amplitude of the undulation has grown beyond a critical level. It is not 
obvious what mechanism leads to the formation of these undulations. It could be that 
a longitudinal-type oscillation is excited in the fountain or the effect may be related to 
the buckling of the column under the weight of the head. 

Finally, in figure 10(d) the evolution of the fountain is shown when Bo = 3.4 and 
9 = 1 1.3 f 0.1. We observe the evolution of the fountain into a mushroom-like structure. 
Evidence that lobes have formed follows from the sharp transition between the 
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FIGURE lO(b). For caption see p. 245. 

columnar region and the head as visible in the last frame. The evolution of the fountain 
with Bo = 4.9 and discharge rates in the range 10 < 2 < 15 was very similar to that 
shown in figure lO(d). For smaller discharge rates we typically observed the collapse 
of the fountain over the rim of the nozzle. With the pump we used we were unable to 
achieve a discharge rate of 9 > 20 for the two largest nozzles. We were therefore unable 
to determine whether or not the buckling-like behaviour observed in figure lO(c) is a 
persistent feature for larger Bond numbers and large discharge rates. 

The most significant discrepancy between numerical and experimental work is that 
the ejection of a drop is generally not observed experimentally although expected on 
the basis of our numerical work. The ejection of a drop from the surface shortly after 
the fountain emerges from the nozzle was never observed in experiments with the 5,  10 
and 12 mm nozzles, however, it was observed occasionally with the 8 mm nozzle. In 
figure I 1  we present successive frames of a high-speed film showing the ejection of a 
drop from the 4 mm nozzle when the discharge rate was 9 = 13.4+ 0.1. Although the 
parameter values are different, there is reasonable qualitative agreement between the 
first frame in figure 11 and the final free-surface shape prior to bifurcation as shown 
in figure 3. Unfortunately the ejection of the drop is not a persistent feature. It seems 
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FIGURE lO(c). For caption see facing page. 
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FIGURE 10. Selected frames from a high-speed film (film speed: 250 frames s-l): (a) Bo = 0.85 and 
9 = 14.1 f0.4, the first two frames are separated 12 ms and the remaining frames by 16 ms. 
(b) Bo = 2.2 and A? = 10.9$0.3, all frames are separated 16 ms. (c) Bo = 2.2 and 9 = 24.3f0.2 the 
first six frames are separated 16 ms and the separation of the last three frames is 8 ms. (d) Bo = 3.4 
with 9 = 11.3 fO.l, all frames are separated 16 ms. The millimetre markings on a ruler are visible on 
each frame. 

that one of the most important prerequisites for the ejection of the drop is a symmetric 
surface. The fact that the capillary surface is almost certainly not flat when it emerges 
from the nozzle will also effect the subsequent dynamics of the fountain but numerical 
evidence suggests that a drop may be ejected even when the surface is curved (parabolic 
shape). However, only when the surface is symmetric can we expect the formation of 
a deep trough at the symmetry axis resulting from the axisymmetric wavefront 
converging on the symmetry axis. It appears that with the advance of the capillary 
surface through the nozzle, small asymmetries are generated which prevent the trough 
being formed. Interesting in this respect is the observation that cleaning the nozzle 
thoroughly had an adverse effect on the drop formation - no drops were generally 
observed with a very clean nozzle while drops were observed after the nozzle had been 
used for some time. This adds to our conviction that the dynamic behaviour of the 



246 R. M .  S. M .  Schulkes 

FIGURE 11. The ejection of a drop from the free surface of an evolving fountain. The diameter of the 
nozzle is 8 mm, the discharge rate is 2? = 13.4 f 0.1. The frames are 4 ms apart and the arrow indicates 
the position of the drop. 
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contact line (which is affected by the cleanliness of the nozzle) is very important. 
Whenever drops were observed the dimensionless discharge rate was at least 10. Below 
this value no drops were ever observed. This value is almost 50 % higher than what is 
predicted on the basis of our numerical work. Unfortunately we have insufficient data 
to make a reliable statement. 

On the basis of our numerical work we would also expect an air bubble to be 
entrained by the capillary surface for a sufficiently large discharge rate. Only on one 
occasions was an air bubble observed in the head of the fountain. However, even with 
this bubble we are not entirely certain whether it was the result of entrainment. 
Unequivocal experimental evidence that an air bubble can be entrained by the capillary 
surface has yet to be obtained. 

It seem appropriate to give an a posteriori justification of the potential flow 
assumption since we compare our numerical work with the experimental results. For 
small discharge rates (9 < 4) the velocities are small (typically u < 0.2 m s-l and so the 
Reynolds number is relatively small, in particular for the smallest nozzle (Re < 500 for 
the smallest nozzle when 9 < 4). Recall that for small discharge rates dynamic effects 
are of minor importance since the fountain evolves as a slowly growing drop at the end 
of the nozzle. Hence the fact that for small discharge rates the potential flow 
assumptions are not quite justified is compensated by the observation that dynamic 
effects are of minor importance anyhow. Near the critical discharge rate the Reynolds 
number for all nozzles is at least 1000. When the discharge rate is large, the main effect 
of the viscous forces is to modify the velocity profile at the mouth of the nozzle. 
However, the velocity profile is relatively unimportant as numerical experiments have 
shown. Hence one is justified in assuming potential flow conditions in the study of 
water fountains. 

7. Conclusions 
In this paper we have studied the evolution of capillary fountains by employing an 

integral formulation of the governing equations. Because the area of the capillary 
surface increases with time, a regridding strategy is applied in which (i) nodal positions 
are updated so as to maintain a uniform distribution of nodes, and (ii) nodes are added 
to the free surface to prevent a continuous increase in the average length of elements. 
With the regridding procedure no short-wavelength instabilities are present during the 
time integration. When the regridding procedure is applied such that positions of new 
nodes are restricted to line elements joining old nodes, we find that mass is lost as a 
result of the regridding operation. In addition, the regridding operation has a 
significant stiffening effect, in particular close to a bifurcation point. It is found that 
these problems can be reduced by calculating the new nodal positions using locally 
cubic splines. 

Numerical experiments indicate that four different evolution regimes exist. For small 
values of the discharge rate (2 < 4) the fountain evolves as a sessile drop at the mouth 
of the nozzle. Apart from the initial stage of the evolution in which dynamic effects are 
still important, the shape of the drop is determined mainly by its volume and the Bond 
number. In addition we find that the maximum height attained by the fountain is 
independent of the discharge rate when the discharge rate is small. When 9 > 4 
dynamic effects become important. First, we find that the height attained by the 
fountain increases with increasing discharge rates. When the discharge rate is below a 
critical value (which depends on the Bond number) the evolution of the fountain is 
characterized by the formation of lobes. For small Bond numbers these lobes fold onto 
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the fluid column supporting the head while for larger Bond numbers the lobes fall over 
the side of the nozzle thus surrounding the nozzle by a curtain of fluid. Calculations 
show that eventually this curtain of fluid becomes unstable. For a sufficiently large 
discharge rate our numerical calculations suggest that a physical bifurcation may 
occur. This bifurcation is related to the ejection of a drop from the capillary surface. 
For even larger discharge rates our calculations suggest that an air bubble may be 
entrained by the capillary surface. 

Some simple experiments have been carried out in order to verify some of our 
numerical predictions. The biggest difficulty we experienced in the experiments is how 
to bring the initial conditions in the experiment in line with the prescribed initial 
conditions in the numerical work. A symmetric surface emerging from the nozzle is 
hard to obtain experimentally. In particular the ejection of a drop from the free surface 
appears to be affected strongly by small asymmetries. Experiments appear to confirm 
our numerical prediction that for discharge rates less than 9 = 4 the shape of the 
evolving fountain is mainly determined by the Bond number and the volume rather 
than dynamic effects. 

For large discharge rates interesting phenomena are observed. When the Bond 
number is small (Bo = 0.85) the evolution of the fountain is characterized by a neck 
which moves towards the mouth of the nozzle. For a larger Bond number (Bo = 2.2) 
the fountain assumes the shape of an extended mushroom rising high above the nozzle 
while maintaining its symmetry. Subsequently large undulations develop on the liquid 
column leading to a violent collapse of the fountain. 

While the ejection of drops from the free surface has been observed, we have been 
unable to obtain a good numerical value for the critical discharge rate from our 
experiments. Neither have we been able to establish unequivocally that an air bubble 
will be entrained for a sufficiently large discharge rate, as is predicted numerically. 

The author is indebted to staff of DAMTP for heip and advice in carrying out the 
experiments. He is also grateful to Janet Ververda for proofreading numerous drafts 
of this paper. The research was financed by the Commission of European Communities 
under contract number B/SC1-900617. 

Appendix 
Since the numerical scheme outlined in 993 and 4 does not require explicit smoothing 

to suppress short-wavelength instabilities, the question arises of whether the regridding 
procedure we have used dissipates energy excessively. In order to answer this question 
we study the following test problem. A cylindrical container with unit radius and unit 
depth is filled to the brim with an inviscid fluid We assume that in equilibrium the 
capillary surface is flat, situated at z = 1 and that the capillary surface remains attached 
to the rim of the container when the surface is disturbed. Given some initial 
disturbance the free surface will then oscillate about the equilibrium position z = 1. 
Note that in order to study this test problem with our numerical code, all we need to 
do is prescribe some initial disturbance and take We = 0 to that i3r$/c'~I,=~ = 0 on r. 

In order to monitor the energy conservation of our numerical scheme we have to 
calculate the surface energy BS, the kinetic energy B, and the potential energy gP at 
each time step. For simplicity we neglect body forces so that gP = 0. The excess surface 
energy is equal to the increase in surface area due to the free-surface displacement, 

8s = IS1 - ISOL 
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FIGURE 12. Plots of the energies gS/2n (dotted line), &K/2n. (dashed line) and &J2n 
(solid line) versus time. 

with ISn[ = 2x. The kinetic energy of free-surface oscillations is given by the well- 
known expression 

We assume that some initial free-surface elevation is given and that the free surface is 
at rest at t = 0. Energy conservation then implies that €s,n = € S + € K  where €s,n 
denotes the excess surface energy due to the initial disturbance. For the initial 
disturbance. For the initial elevation of the free surface we take 

$,,(r) = e(5r3 - 6r2 + I), (A 1) 

which satisfies the conditions qn(l)  = &(O) = 0 and Ji Tn(r) rdr = 0. A straightforward 
calculation shows that €,,J27t = 7.42 x for c = 0.1 and € s , n / 2 ~  = 2.87 x lo-' for 
E = 0.2. In figure 12 we have plotted €,, GK and 8, = €ky + € K  as a function of time 
for the initial disturbance with c = 0.1. The calculation was performed with 40 
elements on the free surface, At = 1.25 x lop3 and regridding was applied every time 
step. A calculation in which regridding was not applied at all yielded results that were 
virtually identical. We observe the oscillatory behaviour of the free surface and kinetic 
energies; however the total energy does not vary significantly with time and remains 
more or less constant at its initial value gT = &s,o = 7.42 x 

In figure 13(a) we have plotted gS, gK and GT as a function of time for the case 
e = 0.2 and no regridding. We note relatively large variations in G, near t = 1 and 1.75. 
Shortly after t = 1.75 the calculation breaks down. In order to explain these results we 
have plotted the free-surface elevation at r = 0 as a function of time in figure 13(b). We 
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FIGURE 13. (a) The energies €s/2a (dotted line), €J2a (dashed line) and €,/2n (solid line) versus 
time. (b) The amplitude of the free surface at r = 0 versus time. No regridding was used in the 
calculations. 



Evolution of capillary fountains 25 1 

3.0 

(x 10-2) 

2.5 

2.0 

B 8 1.5 
W 

1 .0 

0.5 

0 0.5 1 .o 1.5 

0.1 I\  I'\ 

Time 
2.0 

fl 
2.5 3.0 

0 0.5 1 .o 1.5 2.0 2.5 3.0 

Time 
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note that shortly after t = 1 high-frequency oscillations appear which then disappear 
but subsequently reappear near t = 1.75 with increased amplitudes. The increase in the 
total energy can be attributed to the presence of the high-frequency waves. The 
breakdown of the calculation is due to the unbounded growth of the amplitudes of the 
high-frequency waves. 

When the calculation with F = 0.2 is performed once more but with regridding 
applied after each time step, we find that the energy and amplitude vary with time as 
shown in figure 14(a,b) respectively. We observe that while there is still evidence of 
high-frequency oscillations, the amplitudes of these oscillations do not grow so as to 
cause the calculation to break down. The total energy clearly varies with time, 
decreasing slightly as time increases. It is evident that energy is dissipated as a result 
of the regridding operation. However, we believe that for the problem under 
consideration the energy dissipation is not excessive and is unlikely to have a major 
influence on the results since the time integration is rarely continued for longer than 4 
dimensionless time units. 
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